Optimizing denominator data estimation through a multimodel approach.
نویسندگان
چکیده
To assess the risk of (zoonotic) disease transmission in developing countries, decision makers generally rely on distribution estimates of animals from survey records or projections of historical enumeration results. Given the high cost of large-scale surveys, the sample size is often restricted and the accuracy of estimates is therefore low, especially when spatial high-resolution is applied. This study explores possibilities of improving the accuracy of livestock distribution maps without additional samples using spatial modelling based on regression tree forest models, developed using subsets of the Uganda 2008 Livestock Census data, and several covariates. The accuracy of these spatial models as well as the accuracy of an ensemble of a spatial model and direct estimate was compared to direct estimates and "true" livestock figures based on the entire dataset. The new approach is shown to effectively increase the livestock estimate accuracy (median relative error decrease of 0.166-0.037 for total sample sizes of 80-1,600 animals, respectively). This outcome suggests that the accuracy levels obtained with direct estimates can indeed be achieved with lower sample sizes and the multimodel approach presented here, indicating a more efficient use of financial resources.
منابع مشابه
Error - weighted discriminative training for HMM parameter estimation
Optimizing discriminative objectives in HMM parameter training proved to outperform Maximum Likelihood-based parameter estimation in numerous studies. This paper extends the Maximum Mutual Information objective by applying utterance specific weighting factors that are adjusted for minimum sentence error. In addition to that, the paper investigates tuning separate numerator and denominator weigh...
متن کاملA Fuzzy Goal Programming Approach for Optimizing Non-normal Fuzzy Multiple Response Problems
In most manufacturing processes, each product may contain a variety of quality characteristics which are of the interest to be optimized simultaneously through determination of the optimum setting of controllable factors. Although, classic experimental design presents some solutions for this regard, in a fuzzy environment, and in cases where the response data follow non-normal distributions, th...
متن کاملMultimodel SuperEnsemble technique for quantitative precipitation forecasts in Piemonte region
The Multimodel SuperEnsemble technique is a powerful post-processing method for the estimation of weather forecast parameters reducing direct model output errors. It has been applied to real time NWP, TRMM-SSM/I based multi-analysis, Seasonal Climate Forecasts and Hurricane Forecasts. The novelty of this approach lies in the methodology, which differs from ensemble analysis techniques used else...
متن کاملImproved Medium- and Long-Term Runoff Forecasting Using a Multimodel Approach in the Yellow River Headwaters Region Based on Large-Scale and Local-Scale Climate Information
Mediumand long-term runoff forecasting is essential for hydropower generation and water resources coordinated regulation in the Yellow River headwaters region. Climate change has a great impact on runoff within basins, and incorporating different climate information into runoff forecasting can assist in creating longer lead-times in planning periods. In this paper, a multimodel approach was dev...
متن کاملImproved categorical winter precipitation forecasts through multimodel combinations of coupled GCMs
[1] A new approach to combine precipitation forecasts from multiple models is evaluated by analyzing the skill of the candidate models contingent on the forecasted predictor(s) state. Using five leading coupled GCMs (CGCMs) from the ENSEMBLES project, we develop multimodel precipitation forecasts over the continental United States (U.S) by considering the forecasted Nino3.4 from each CGCM as th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Geospatial health
دوره 8 2 شماره
صفحات -
تاریخ انتشار 2014